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Analysis and Refinement of a Method for Numerically 
Modeling Deep-Penetration Welding Processes Using 

Geometric Constraints 
S.G. Lambrakos and J. Milewski 

A detailed analysis and refinement of a method of numerically modeling deep-penetration welding proc- 
esses using geometric constraints based on boundary information obtained experimentally is presented. 
The general features of the numerical method have been described previously. This paper considers is- 
sues concerning accurate numerical calculation of temperature and velocity fields in regions of the melt 
pool where the flow of fluid is characterized by quasi-stationary Stokes flow. It is this region of the melt 
pool that is closest to the heat-affected zone and that represents a significant fraction of the fusion zone. 
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1. Introduction 

IN A previous paper (Ref 1), the present authors introduced a 
numerical model and an associated collection of numerical 
methods for calculating structures that can occur in deep-pene- 
tration welding processes (i.e., laser or electron beam). That re- 
port described the general features of the numerical model, that 
is, the underlying physical model and the associated numerical 
methods. It also provided a general survey of possible exten- 
sions of the numerical model that are possible in principle be- 
cause of two factors: (1) the inherent physical character of the 
deep-penetration welding process and (2) the flexibility inher- 
ent in the general formalism of the SIMPLE algorithm with re- 
spect to its modification or extension for modeling the 
deep-penetration welding process. 

In another paper (Ref 2), we further discussed numerical 
methods for effecting calculations with the model. That report 
introduced two procedures for the inclusion of experimental in- 
formation concerning steady-state weld-pool shape into the 
model system. These procedures entail the application of con- 
straints and the deduction of effective keyhole shape via an in- 
verse mapping procedure. A feature of the procedure for 
imposing constraints is that it tends to compensate for either the 
unavailability of experimental measurements of material prop- 
erties or gaps in knowledge concerning the general character of 
the keyhole. A feature of the inverse mapping procedure is that 
it tends to compensate for error propagation within the solution 
domain due to coarse-grid discretization of the solution in re- 
gions close to the keyhole. In the present paper, the two proce- 
dures for implementing constraints that are presented in Ref 2 
are combined within a more refined reformulation of the geo- 
metric-constraints method. 

This paper considers issues concerning accurate numerical 
calculation of temperature and velocity fields in regions of the 
melt pool where the flow of fluid is characterized by quasi- 
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steady Stokes flow. The underlying motivation of our present 
development is that it is transport in these regions of the melt 
pool which couples most strongly and directly to the heat-af- 
fected zone (HAZ) and which, because of the rapid onset of vis- 
cous effects, represents a significant fraction of the fusion zone 
(FZ). The physical characteristics of all other regions of the 
melt pool, as well as the keyhole itself, are considered with re- 
spect to the relative strength of their coupling to regions of the 
melt pool that are close to the solidification boundary and 
within the Stokes-flow regime. Regions of the melt pool that 
are close to the keyhole present a particular problem because of 
the sharp rise in temperature. With respect to numerical dis- 
cretization, these regions can be characterized effectively as 
numerical singularities resulting from the type of stiffness that 
occurs in the integration of shocklike structures. However, re- 
gions of the melt pool that are close to the solidification bound- 
ary are characterized by fluid properties, which provide a 
means of overcoming any ill-conditioning due to the numeri- 
cally singular character of regions near the keyhole and a more 
accurate specification of the flow. Because the character of the 
flow in regions that are close to the trailing solidification 
boundary is not coupled to the details of the character of the 
flow in regions near the keyhole, a well-posed input condition 
is a set of upstream boundary values of the temperature and 
fluid-flow fields. The reformulation of the geometric-con- 
straints method presented in this paper entails the specification 
of a consistent set of upstream boundary values of temperature 
and flow velocity rather than explicit specification of the beam 
energy source. 

2. Physical Model of Deep-Penetration Welding 

The general features of our numerical model are described 
in Ref I and 2. What is presented here is actually a refinement 
of the model based on its extension to include geometric-con- 
straint information. In the context of using geometric con- 
straints, it is the solidification boundary and top surface 
boundary that determine the solution, rather than the boundary 
corresponding to the vapor-liquid interface associated with the 
keyhole. Given this, it follows that the flow characteristics of 
the liquid in regions of the melt pool near the solid-liquid 
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boundary must be modeled accurately. The keyhole boundary 
or keyhole source term, depending on the fashion of  implemen- 
tation, is only used to adjust the characteristically monotonic 
flow field along the top surface and solidification boundaries. 
Therefore, in the present model, it is not considered a true 
boundary of  the system or, more precisely, of the solution do- 
main. The present model adopts the approximation that the 
flow character of  the liquid region is mostly that of  quasi- 
steady Stokes flow (Ref 3, 4). The significance of  this approxi- 
mation with respect to numerical modeling of  the weld melt 
pool is discussed in the next section. 

The model system to be specified is characterized by quasi- 
steady mass, energy, and momentum transport in a coordinate 
system that is fixed in the reference frame of  a moving beam en- 
ergy source, that is, an electron or laser beam. The Boussinesq 
approximation (Ref 5) is applied to the system of transport 
equations underlying the numerical model. A schematic of  the 
model system is shown in Fig. 1. The boundaries of  the model 
system are defined, at each time step, by the sides of a finite- 
sized rectangular region containing the beam and by the tem- 
perature of  vaporization isotherm, which is taken to represent 
the vapor-liquid boundary of the keyhole. Outflow boundary 
conditions are imposed on all boundaries other than that of the 
keyhole. 

The system is assumed to be symmetric about the xz-face at 
y -- 0 (see Fig. 1); thus, only one-half of the system is modeled. 
The equations of  transport governing the model system are as 
follows. The equation of  energy transport is: 

aT ~ v aT - -  + V- [UT] + = ~(T)V2T(x,t) + V �9 q al lj B aXj (Eq 1) 

where 

/4/3 r(T) - (Eq 2) 

and 

G 

V - q = ~ V ' q  1 

/=1 

(Eq 3) 

The term V �9 q represents the total energy transferred into the 
system from different types of  sources. The equation of mo- 
mentum transport is: 

aUj = v(T)V2Uj 1 a P  
at p(T) 3xj (Eq 4) 

where 

~t(73 
v(T) = (Eq 5) 

0(13 

andj  = 1, 2, 3 denotes the Cartesian coordinates x, y, and z, re- 
spectively. Lastly, the equation of  mass transport is: 

V .  U = 0 (Eq 6) 

The quantity U = (U1, U 2, (.]3) = (u, v, W) is the velocity field at 
a given point, and x = (x 1, x 2, x 3) = (x, y, z) is the Cartesian co- 
ordinate of  that point. The quantity V B is the speed of  the beam, 
moving in the direction of  increasing x, and 6ij is the Kronecker 
delta function. The quantity P is the pressure at a given point, 
and Tis the temperature. In our model, the density p(T), coeffi- 
cient of  viscosity Ix(T), conductivity k(T), and heat capacity 
Cp(T) are functions of  temperature T. The thermal coefficient 
o f  surface tension is given by: 

37 
3T - -Anfs(x'Y) (Eq 7) 

where A n is a constant and fs(X, y) is a two-dimensional modu- 
lation function whose form is specified according to experi- 
mental information about melt-pool shape. The quantity given 
by Eq 7, which is formally equivalent to the coefficient of  sur- 
face tension, is for the purpose of  lumping the influence of  phe- 
nomena occurring in the vicinity of  the keyhole and at the top 
surface of  the melt pool, which are not included explicitly in the 
model system. Further discussion concerning this quantity is 
given in Ref 2. It is to be noted, however, that this function pro- 
vides a means of including experimentally obtained informa- 
tion concerning the shape of  the melt pool. 

It might be noted that Eq 4 is given in vector-component 
form, whereas Eq 1 and 6 are given in vector form. This differ- 
ence of representation is only for purposes of  notational consis- 
tency with respect to the subsequent development given in 
section 5. In addition, we have purposefully not included, for 
the sake of  clarity, the effects of  latent heat of  fusion and of  
fluid flow due to buoyancy, which represent additional terms to 
Eq 1 and 4, respectively. These effects, although significant 
with respect to quantitative analysis, are not relevant within the 
context of  our present development, which concerns a general 
analysis and refinement of  the geometric-constraints method 
(Ref 2). It should be noted, however, that the inclusion of  these 
effects via the addition of  terms to the equations of  transport 
does not alter any of the derivations presented in this report. 

In Eq 1, the influence of  convection is represented by two 
terms: one containing U and one containing V B. This repre- 
sentation follows because the flow field associated with the 
convection term in the energy transport equation (Eq 1) is de- 
fined with respect to an origin that is fixed in the workpiece. 
The component of the flow field parallel to the direction of  the 
motion of  the beam is therefore p(u + VB); however, the de- 
pendent variables of  the momentum transfer equations (u, v, w) 
are the velocities relative to an origin that is stationary with re- 
spect to the beam. The weighting coefficients for the discretiza- 
tion of  Eq 1 as defined by the SIMPLE algorithm (Ref 6) are 
modified to take into account this representation. The proper- 
ties of  the SIMPLE method with respect to solving Eq 4 are dis- 
cussed in section 5. In addition, although we have adopted the 
weighting coefficients that are employed by the SIMPLE algo- 
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rithm, the numerical procedure employed here is different and 
is structured for the particular problem considered in this study. 

At the keyhole liquid-vapor interface, the boundary condi- 
tions on the momentum transfer equations are those of a no-slip 
boundary. That is, the component of the velocity, in the refer- 
ence frame of the workpiece, normal to the interface is zero: 

U - n + V  B. n = 0  (Eq8) 

where n is the unit normal to the keyhole liquid-vapor boundary 
and V B is the velocity of the beam with respect to the workpiece 
and is in the x-direction. Another boundary on the molten re- 
gion is defined by the solid-liquid interface. The boundary con- 
dition on this boundary is specified in our model according to: 

Uj=-5IjV B, i f T < T  M (Eq9) 

Note that according to this specification, the set of all nodes 
having temperature values less than T M includes both boundary 
and exterior points of the melt pool. 

Note: A significant feature of the analysis and geometric- 
constraints method presented in this paper is the explicit sepa- 
ration of upstream and downstream boundary conditions 
according to their relative weighting on the flow field within 
the weld melt pool. Accordingly, the boundary condition that is 
defined by Eq 8, although formally a boundary condition on the 
model system, is not adopted within our present development 
as a boundary condition on the solution domain. Apoint of em- 
phasis in the analysis, based on the inherent monotonicity of 
the temperature and flow fields in the weld melt pool, is that the 
inclusion of geometric-constraint information imposes the ne- 
cessity of having to make choices with respect to the inclusion 
of boundary conditions. Equations 1 to 9 are sufficient for a 
unique specification of the system. Inclusion of geometric-con- 
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Fig. 1 Schematic of model system showing relative coordinates 
of system boundaries 

straint information, however, implies an overspecification of 
the system. Depending on the type of geometric-constraint in- 
formation included, it is necessary to make a choice between 
either upstream boundary values (e.g., Eq 8) or downstream 
boundary values for specification of the system. 

3. Discussion of Computational Issues 

This section delineates physical properties and practical 
considerations influencing our choice of numerical methods 
for modeling deep-penetration welding processes occurring 
within regions that are close to the solidification boundary. Re- 
gions of the system that are relatively close to the vapor-liquid 
boundary defining the keyhole are characterized by large tem- 
perature gradients. Consequently, numerical discretization of 
the differential equations of transport over the solution domain 
which encloses the combined system of regions that are close 
and regions not close to the keyhole can result in a discretized 
system that is stiff (Ref 7) and therefore ill-conditioned for ac- 
curately calculating the coupling between these regions. This 
type of error propagation tends not to be significant for numeri- 
cal modeling procedures that employ information concerning 
the shape of the solid-liquid boundary (Ref 2). These proce- 
dures tend to damp out errors that may result from either a time- 
averaged estimate of the keyhole boundary or discretization 
error. 

Mass, momentum, and energy transport are characterized 
by two types of upstream influence or weighting. First, for re- 
gions very close to the keyhole, there is an upstream weighting 
relative to the center of the keyhole. Second, there is an up- 
stream weighting relative to the direction of the motion of the 
beam. This upstream weighting increases with the degree of 
proximity to the keyhole and is due to (1) the relative motion of 
the beam with respect to the workpiece and (2) the flow of fluid 
above the top surface of the workpiece and in the direction op- 
posite to that of beam motion. These two types of upstream 
weighting imply a monotonicity of the flow field. 

The top-surface boundary of the model system represents a 
major influence on the character of the solution within the solu- 
tion domain. The nature of the solution in regions that are both 
near to the top boundary and near to the keyhole boundary, 
however, poses a numerical sensitivity problem. This sensitiv- 
ity problem results from the sharp rise in temperature which nu- 
merically is analogous to shock structures occurring in cases of 
rapid momentum transport and which is effectively discontinu- 
ous. Calculation of temperature gradients in this singular re- 
gion via numerical finite-differences can result in large errors. 
This is significant because, considering the partially parabolic 
character of the system, it is the keyhole and top surface 
boundaries which essentially drive the solution in the absence 
of any additional information concerning the solidification 
boundary. 

No matter what the character of the flow field in regions 
close to the keyhole or at points within the liquid somewhat re- 
moved from the solidification boundary, the Reynolds number 
is very small for regions of the melt pool close to the solidifica- 
tion boundary. Therefore, for regions of the melt pool close to 
the solidification boundary, the velocity field is specified by 
Stoke's equation (i.e., Eq 4). 
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The keyhole is very small relative to the total volume of the 
steady-state melt pool. That is to say, the total area of the sur- 
face defined by the vapor-liquid boundary is extremely small 
relative to the total area of  the surface defined by the union of  
the steady-state solidification boundary extending into the 
workpiece and the planar boundary formed by the intersection 
of  the molten pool and top surface plane. This large difference 
in total surface area has mathematical implications with respect 
to the solution domain. It implies that the keyhole, although an 
energy source with respect to the temperature field, can be con- 
sidered as effectively not being a boundary of the solution do- 
main. 

The solution domain over which the velocity field is to be 
specified is closed in the mathematical sense. This property 
provides additional conditions with respect to which a solution 
can be determined. This closed-boundary perspective may not 
be intuitively apparent when considering the problem from the 
standpoint of a keyhole moving through a liquid. The deep- 
penetration welding problem, when posed from an open- 
boundary perspective, tends to overlook the existence of the 
solidification boundary as a true system boundary and consid- 
ers both liquid and solid regions as part of  an unbounded fluid 
domain, which is simply not the case. 

Unsteady or turbulent flow structures occurring in regions 
close to the keyhole or at points within the liquid somewhat re- 
moved from the solidification boundary are weakly coupled to 
the trailing solidification boundary, whose shape remains ef- 
fectively fixed. An analysis of  the coupling between the leading 
and trailing boundary is given in section 6. 

4. Boundary Conditions 

This section specifies the boundary conditions on each face 
of  the sample with respect to temperature and velocity. In the 
present development, the model system is that of  a portion of  
the workpiece within which the entire melt pool is contained. 
This condition is consistent with the requirement that the model 
system include a liquid region extending over a finite and 
closed domain. The outflow boundary conditions for the tem- 
perature field are based on a linear extrapolation. 

Boundary conditions on the xy-face at z = 0 are: 

/)T 
- - =  0 (Eq 10a) 
3z 

bu ~ T  ~v 27 0T 
g ~z ~T ~x and g~-z = ~T ~y' if TM~ T ~ T  o 

(Eq lOb) 

u = - V  B and v = 0, otherwise (Eq 10c) 

and 

w = 0 (Eq 10d) 

The quantity ~ll3Tis the thermal coefficient of  surface tension. 

Boundary conditions on the xy-face at z = L z and at time t + 
At are: 

- Al, t) 2 ] 
T(x' y 'Lz 2-Al(-~J (Eq l la )  T(x, y,L z, t + At) = [max T A, ~ Y, L---~ 

Ou OT OT Ov OT OT 
3 z -  OT3x and ~zz  = OT0y '  if T M ~ T s  G 

(Eq l ib )  

u = - V  B and v = 0, otherwise (Eq 1 lc) 

and 

w = 0 (Eq l id )  

Boundary conditions on the xz-face at y = 0 are: 

OT 
- -  = 0 (Eq 12a) 
Oy 

3 u _ 0 ,  v = 0 ,  and 0 w = 0  (Eq l2b )  
3y Oy 

Boundary conditions on the xz-face at y = Ly and at time t + 
At are: 

V r(x,  Ly - Al, z, t) 2 ] 
T(x" Ly' z' t + At) = maxl TA' -~y --- '~,  Z:-~] 

L r(x,  
(Eq 13a) 

u = - V  B, v = 0 ,  and w = 0  (Eq l3b)  

Boundary conditions on the yz-face at x = 0 and at time t + 
At are: 

T(0, y, z, t + At) = max[T A, T(AI, y, z,_ 02 ] 

L T(2A/, y, z, t)J 
(Eq 14a) 

where x = 0 does not coincide with the physical edge of  the 
workpiece. 

u = - V  B, v = 0 ,  and w = 0  (Eq l4b)  

Boundary conditions on the yz-face atx = L x and at time t + 
At are: 

r T(L x - Al, y, z, 027 
T(Lx, Y,Z,t + At)=maxl TA, ~ x - ~ , - ~ , , z - ~ t ) J  

L 
(Eq 15a) 

u = - V  B, v = 0 ,  and w = 0  (Eq l5b)  
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It is important to note that the boundary conditions on the 
system boundaries at face xz at y = Ly, face yz at x = 0, and face 
yz at x = L x are physically consistent since in our calculations a 
solid state occurs in the neighborhood of  these boundaries, that 
is,  only if the temperature at grid points in the neighborhood of  
these boundaries is less than T M SO that u = - V  B. 

5. Transition of SIMPLE Algorithm to a 
Quasi-Biharmonic Solver 

According to the formalism of the SIMPLE algorithm, the 
discrete integral representation of the momentum transport 
equations, within the Boussinesq approximation, is: 

U(n) = 1 _ p(A/) 3 
P,J akU~TJ 1) + At U~p,j + UCp, j (Eq 16) 

where 

6 
p(A/) 3 

WP = Z a/c + At 
k=l 

(Eq 17) 

andj  = 1, 2, and 3. The quantity UCp, j is the correction term such 
that: 

~ 3 G i  3 OUCp,i 

i=1 i=1 

(Eq 18) 

The subscriptp is the node index and the superscript (n) designates 
the value at the nth iteration. The weighting coefficients a k and in- 
dexing scheme for node neighbors are defined in Ref 1. The 
quantity U~, j is the value of  Up j at the previous time step. A 
property of'the coefficients a k ~s that for sufficiently large IX: 

a k = IXkAI (Eq 19) 

Next, combining Eq 4 and 6, we obtain the governing equa- 
tion of Stokes flow, that is: 

V2p = 0 (Eq 20) 

Next, we note that: 

~ (V2p) = V2[ ~P ] 

For steady-state conditions: 

0P= 
3xj g(T)V2Uj (Eq 22) 

Therefore: 

V 2 ( ~ ( T ) V 2 U j )  = 0 (Eq 23) 

or equivalently, via a finite-difference representation: 

6 
1 

~pV2Up, j = -6 E ~l'kV2Uk, j 
k=l 

(Eq 24) 

where Ixk = P-(Tk) and Uj is called a quasi-biharmonic function 
over the solution domain. Given the condition of  geometric 
constraints and the mathematical conditions associated with 
the steady-state melt pool that are outlined in section 3, it fol- 
lows from Eq 24 that: 

6 

u(n) = 1 Z ~tkU~n, jl) (Eq25) 
P'J 6lap k=l 

where the superscript (n) designates the nth iteration. A deriva- 
tion of Eq 25 is given in Appendix 1. Note that in Eq 25 the cou- 
pling among U/c,1, Uk, 2, and U k ,3 is through Eq 1. The presence 
of  the function Ix(T) in Eq 23 implies that Uj is not a biharmonic 
function in exact accordance with the mathematical definition, 
that is, V4Uj = 0. However, within the approximation of  small 
variations in the value of Ix(T) with changes in the value of x = 
(Xl, x2, x3), which is consistent with the Boussinesq approxima- 
tion, the functional character of  Uj is very close to that of  a 
biharmonic function and is therefore designated as quasi-bihar- 
monic. 

Equation 24 is a finite-difference representation of  Eq 23, 
whose discretization is with respect to a uniform three-dimen- 
sional grid where the distance of  separation between nodes is 
assumed to be sufficient for the specified tolerance. Compari- 
son of  Eq 25 and 16 shows that for steady-state conditions (or 
more generally for quasi-steady-state conditions), small 
Reynolds numbers, and a closed finite domain (whose bounda- 
ries are specified via geometric constraints on the flow field), 
the SIMPLE algorithm transitions to a quasi-biharmonic 
solver. 

6. Sensitivity Analysis of Trailing Solidification 
Boundary 

Reference 2 describes a procedure for imposing a melt-pool 
constraint at the top surface of  the workpiece. This is effected 
by adjusting the values of the surface-tension-like coefficient 
defined by Eq 7. Although this coefficient has a formal similar- 
ity to that of  a coefficient of  surface tension, it no longer has this 
meaning. The coefficient defined by Eq 7 is for the purpose of  
weighting the velocity field at the top-surface plane so as to ef- 
fect a geometric constraint on the melt pool that is consistent 
with experimental information about the shape of  the solidifi- 
cation boundary that intersects the top-surface plane. The form 
of the modulation function fs(x,y) given in Eq 7 must be consis- 
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tent with the monotonicity conditions that follow from the 
physical character of the top-surface melt pool, these condi- 
tions being monotonicity relative to the center of the keyhole 
and monotonicity relative to the direction of motion of the 
beam. As indicated in section 3, the top boundary of the system 
represents a major influence on the character of the solution 
within the solution domain. Therefore, its accurate specifica- 
tion represents a key element of the method of using con- 
straints. 

In Ref 2 we presented a qualitative example of an adjust- 
ment of the shape of the top surface of the melt pool according 
to experimental measurements of the solidification boundary. 

Fig, 2 Transverse cross section of weld showing penetration 
depth and transverse extent of melt pool. Figures 2 through 5 are 
cross sections corresponding to welds made under identical con- 
ditions. 

The underlying criterion for this particular type of geometric 
constraint on the flow field is that the two-dimensional solidifi- 
cation boundary at the top-surface plane can be accurately 
measured. In Ref 2 we also presented an inverse mapping pro- 
cedure between an effective keyhole energy source and the 
trailing three-dimensional solidification boundary. The results 
of case study simulations given in that paper showed a high 
sensitivity of the steady-state trailing solidification boundary 
to changes in the shape of the effective keyhole boundary. This 
section describes results of case study analyses of the sensitiv- 
ity of the trailing solidification boundary with respect to 
changes in conditions associated with the leading portion of the 
weld melt pool. 

We consider first an experimental analysis of the sensitivity 
of the solidification boundary. A series of welds were per- 
formed under identical conditions (i.e., identical weld parame- 
ters). Typical cross sections for these welds are shown in Fig. 2 
to 5. For these welds the beam is slightly defocused for the pur- 
pose of widening the weld and producing an exaggeration of 
the nail-head effect at the top surface. Superimposed on the 
beam motion relative to the workpiece is a small 60 Hz har- 
monic deflection. The amplitude of the harmonic deflection is 
on the order of 10 -4 m. The harmonic component of the beam 
serves two purposes. One purpose is to provide a small pertur- 
bative deflection of the beam, which introduces a small har- 
monic variation in the cooling rate of the trailing section of the 
melt pool. This small variation of the cooling rate results in mi- 
crostructure which, after polishing and etching, reveals the 
steady-state shape of the trailing solidification boundary. This 
is discussed further in section 8. Another purpose of the har- 
monic component of the beam is to provide a probe of the re- 
sponse of the trailing solidification boundary to changes in 
conditions at the leading part of the weld pool, that is, the up- 

stream region of the melt pool near and including the keyhole. 
The trailing edge of the solidification boundary intersecting 

the top-surface plane (see Fig. 5) was found to be weakly cou- 
pled to the harmonic variation of the leading edge of the melt 

Fig. 3 Cross section of frozen solidification boundary corre- 
sponding to positive phase of harmonic perturbation of beam 
position 

Fig. 4 Cross section of frozen solidification boundary corre- 
sponding to negative phase of harmonic perturbation of beam 
position 
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pool. That is, the shape of  the two-dimensional top-surface 
trailing edge remained essentially constant. However, a strong 
coupling was observed between the harmonic variation of key- 
hole position below the top surface and the shape of trailing so- 
lidification boundary along the longitudinal section of  the 
weld. This coupling is described by Fig. 3 and 4, which show 
cross sections of  frozen solidification boundaries correspond- 
ing to positive and negative phases, respectively, of  the har- 
monic variation of  the beam position. 

We consider next an analysis via numerical simulation of 
the sensitivity of the solidification boundary. The conditions on 
our model system are similar to those for our experimental 

analysis (e.g., the same welding speed V B and penetration 
depth). For these simulations the modulation function fs(X, y) 
was adjusted according to the experimentally measured width 
of  the top-surface solidification boundary (e.g., Fig. 5). Shown 
in Fig. 6 is the quasi-steady-state evolution of a melt pool in- 
itially at steady state. Referring to Fig. 6, it is seen that there is 
an increase in the length of the melt pool with time. This is due 
to the increase in energy that is input to the system, which is due 
in turn to the increase in the effective size of  the keyhole. It is 
also observed that although there is coupling between the effec- 
tive keyhole source and the trailing solidification boundary, the 
trailing solidification boundary is insensitive to the periodic 

Fig. 5 Frozen solidification boundary intersecting top surface plane for two different welds made under identical conditions 

Fig. 6 Quasi-steady-state evolution of a melt pool to steady state resulting from oscillatory keyhole boundary. The initial shape of melt 
pool labeled TIME = 0.0 s is that corresponding to keyhole boundary labeled TIME = 0.003 s. At TIME = 0.0 s the keyhole boundary is 
turned on. The keyhole boundary, which is at 2740.85 ~ oscillates for a period of 0.006 s between each of the two different shapes shown. 
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changes in the energy source. That is to say, there is insensitiv- 
ity to the details of change in shape of the keyhole boundary 
that occur over relatively short timescales. This suggests that 
the trailing solidification boundary couples only to the time-av- 
eraged keyhole. 

Shown in Fig. 7 are steady-state melt-pool shapes corre- 
sponding to different effective keyhole sources. It can be seen 
that the shape of the trailing solidification boundary is rela- 
tively sensitive to the shape of the effective keyhole. This result 
is consistent with the experimental observation of a strong cou- 
pling between a variation of keyhole position below the top sur- 
face and the shape of the trailing solidification boundary (e.g., 
Fig. 3 and 4). 

7. Refinement of the Geometric-Constraints 
Method 

The present refinement of the geometric-constraints method 
(Ref 2) is based on the following mathematical properties 
which can be associated with the character of heat and fluid 
flow occurring in a melt pool resulting from a deep-penetration 

Fig. 7 Adjustment of effective keyhole source based on vari- 
ation of shape of boundary of a given temperature 

welding process. First, the solution domain defined by the melt 
pool resulting from a deep-penetration welding process in- 
cludes subregions within which the flow of fluid is charac- 
teristically quasi-steady Stokes. This is especially true of 
regions of the trailing portion of the melt pool. A general prop- 
erty of quasi-steady Stokes flow is given by the following theo- 
rem (see page 132 of Ref4 for proof). 

Theorem 1: There is a unique solution U of the equations 
governing the quasi-steady Stokes flow of incompressible fluid 
which satisfies prescribed boundary conditions. 

Second, we observe that if within a boundary domain the 
solution U is known to be either monotonically decreasing 
or increasing, it is not necessary to have boundary value in- 
formation over the entire boundary in order to effect a rea- 
sonably accurate determination of U within a subregion of 
the domain. Given the condition of monotonicity and a set of 
specified values of U at different points on the boundary, we 
can effect an approximation to a boundary value problem via 
constraints on the equations governing the flow of fluid. The 
condition of monotonicity provides a basis for interpolation be- 
tween specified boundary values. This interpolation will repre- 
sent a good approximation if the specified values of U are 
reasonably distributed. 

Third, we observe that because the character of the flow in 
regions near the trailing solidification boundary is weakly cou- 
pled to the details of the character of the flow in regions near the 
keyhole (where the flow is not quasi-steady Stokes), an effec- 
tive keyhole boundary or an effective energy source may not 
represent a well-posed input quantity. The character of the flow 
in downstream regions of the melt pool suggests that a well- 
posed input condition is that of an upstream boundary upon 
which are specified values of the temperature and Stokes-flow 
fields. 

Fourth, we observe that the values of the temperature and 
flow fields specified at an upstream boundary within a region 
of quasi-steady Stokes flow are not arbitrary and must be con- 
sistent with downstream boundary values. According to Theo- 
rem 1, if the magnitude of the quasi-steady flow field decreases 
monotonically in the downstream direction, then there can be 
only one upstream boundary specification that is consistent 
with a given downstream boundary specification. 

Finally, adopting upstream boundary conditions as input 
conditions on the system implies that the effective keyhole no 
longer has physical significance but represents a generator of 
the temperature and flow field over the upstream boundary. The 
procedure of generating a global upstream boundary from a lo- 
cal effective keyhole source is typically not unique. An inher- 
ent characteristic of local-to-global mappings, where there is 
insensitivity to details of the local structure, is that there can be 
many different types of local conditions or effective-source 
representations that map into an identical global distribution of 
field values. This feature of local-to-global mappings provides 
a basis for convenient specification of upstream boundary con- 
ditions on the quasi-steady Stokes-flow domain. Any effective 
source representation and associated local-to-global mapping 
is suitable if it generates upstream boundary values that are 
consistent with (or map into) specified downstream boundary 
values. 

724--Volume 4(6) December 1995 Journal of Materials Engineering and Performance 



Given the above mathematical properties of the melt pool 
and interrelation between its subregions, a specific approach 
for applying the procedure for calculating the temperature and 
flow fields according to the geometric constraints method can 
be effected. In detailing this approach, we refer to Fig. 8, which 
gives a two-dimensional schematic description of the partition- 
ing of the weld melt pool into two subregions. One subregion 
consists of fluid whose flow character is only quasi-steady 
Stokes. The other subregion contains the keyhole and consists 
of  fluid whose flow character is not that of quasi-steady Stokes. 
Although Fig. 8 shows only a two-dimensional top-surface 
cross section of a melt pool, the present discussion concerns the 
entire three-dimensional melt pool. 

The initial step of the procedure for calculating U and Tis to 
specify a relatively well-distributed set of  downstream bound- 
ary values. An example of  this set of  values is shown in Fig. 9, 
which illustrates the maximum separation between the center 
of  the beam energy source and the trailing solidification bound- 
ary along the top surface of  the workpiece (el)  , the lateral cross 
section of the weld that is perpendicular to the direction of  
travel of the beam (C2), and the solidification curve corre- 
sponding to the intersection of  the trailing solidification bound- 
ary and the plane passing through the center of the beam and 
parallel to the direction of  beam travel (C3). A general discus- 
sion concerning the extraction of  curves C t, C 2, and C 3 is given 
in section 8. 

The next step of  the procedure is the selection and adjust- 
ment of  the modulation function fs(X, y) defined by Eq 7 and of 
the effective energy source. The criterion for adjustment of 
these functions is n o t  the generation of a temperature and flow 
field that generate the entire solid-liquid boundary defining the 
dynamic weld melt pool. The criterion for adjusting these func- 
tions is only that a specified set of  downstream boundary values 
is satisfied. This less restrictive criterion provides a high level 
of  flexibility with respect to adjustment and selection of  f(x, y) 
and the effective energy source. Any combination of  func- 
tions fix, y) and effective energy sources is sufficient if that 
combination generates boundary values on the upstream 
boundary of  the quasi-steady Stokes flow region (see Fig. 
8), which in turn generates U and T fields that map into 
specified boundary values on the downstream boundary. Ex- 
amples demonstrating the high level of  flexibility with re- 
spect to adjustments of  f(x, y) and the effective energy 
source are given by Fig. 7 and 10. For both Fig. 7 and 10, the 
same modulation function f(x, y) is adopted. It is assumed 
that for the energy-source adjustments shown in Fig. 7 and 

Downstream Boundary Upstream Boundary 

~ Flow ~ ~  

U =-" Local-Global Mapping 
Effective Keyhole Source 

Fig. 8 Top-surface schematic description of the partitioning of 
weld melt pool into a subregion where the flow of fluid is quasi- 
steady Stokes and a subregion containing an effective energy 
source. 

10 one is seeking T and U fields that would satisfy down- 
stream boundary values such as are given by curve C 3 in Fig. 
9. In Fig. 7, adjustment of  the energy source is effected by 
variation of  the shape of a surface having a fixed tempera- 
ture (i.e., TG). As can be seen, many of  the qualitative fea- 
tures of  curve C 3 in Fig. 9 can be obtained via simple 
changes in the shape of the surface. Quantitative agreement 
in accordance with specified downstream-boundary values 
would, of  course, require more detailed changes in the shape 
of  the surface. In Fig. 10, adjustment of  the energy source is 
effected by variation of  the temperature of  a surface having 
a fixed shape. 

8. Method of Extracting Experimental Information 
for Constraining the U and T Fields 

Given the unavailability or difficulty of  obtaining experi- 
mental information relating to the shape of  the melted region 
during a deep-penetration welding process, it is necessary to in- 
vestigate methods of extracting this information after the weld 
is completed. In principle, this information is readily available 
through common metallographic analysis of welds as is typi- 
cally performed using specialized preparation techniques. 
Generally, the information extracted from a weld is obtained 
from the transverse view of  the weld cross section. This view 
provides the depth of penetration, the transverse width of the 
weld as a function of depth, and a view of  the HAZ surrounding 
the melt region (e.g., Fig. 2). A longitudinal view of  the weld FZ 
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Fig. 9 Example of a set of downstream boundary values ob- 
tained from experimental measurements 
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along the centerline of  the weld is sometimes examined for the 
presence of  weld discontinuities over a length of  weld section. 
The short-transverse top view of  the weld is usually examined 
optically for the presence of cracks or undercuts at the top edge 
of  the weld boundary and to determine the condition of the top 
bead. Grinding, polishing, and etching of  the top view of  the 
weld is often not performed. 

In practice, elimination or minimization of  the weld crater is 
effected by a controlled reduction of the weld process parame- 
ter affecting downsloping of the melt pool. Rarely is there an 
examination of the weld crater that is caused by an abrupt dis- 
continuation of the heat input. The weld crater is considered un- 
desirable and eliminated in practice. It is also considered 
unrepresentative of  the dynamic steady-state conditions of a 
weld and therefore often ignored as a source of information re- 
lated to these conditions. However, the coupling between the 
short-time transient response of  the melt pool, which follows 
an abrupt discontinuation of the heat input from either an elec- 
tron or laser beam, and the rapid rate of solidification of high- 
aspect-ratio beam welds provides the basis for a method of  
extracting experimental information related to the dynamic 
steady state of the melt pool. This method entails inspection of 
the weld crater to reveal additional information representative 
of dynamic steady-state conditions of the deep-penetration 
welding process. 

We have observed that experimental information which is 
not typically gathered from common metallographic weld sec- 
tioning is available and is representative of  the dynamic steady 
state of the melt pool. This experimental information includes 
the shape of  the melt pool in the top section of  the weld and the 
shape and extent of  the melt pool along the centerline of  the 
weld. This information can be obtained quantitatively along 
with the commonly obtained data of  weld penetration and 
width as a function of  depth. 

A procedure for obtaining this information is as follows. 
First, weld samples are prepared for examination by initiating 
in each case a weld, allowing the weld to reach a steady state for 
a given set of  process parameters, and then abruptly discontinu- 
ing the weld schedule. Metallographic sectioning is performed 
in such a way as to include within each top, transverse, and lon- 
gitudinal view both a steady-state region of the weld and a re- 
gion containing the weld crater. In order to obtain the three 
different views from a single weld, the top view must be pre- 
pared and examined before the longitudinal view. Preparation 
of  the longitudinal view for examination requires removal of  
half of the top view. Cutting, etching, and polishing are per- 
formed to reveal the features of  interest. The choice of etchant 
is critical with respect to revealing the features of interest in 
each of the different views. In the case of stainless steel, Mar- 
ble's reagent is used to examine macrofeatures that are not ob- 

Maximum Temperature = 2740.85 ~ 

Maximum Temperature = 2600.0 ~ 

Maximum Temperature = 2500.0 ~ 

Maximum Temperature = 2300.0 ~ 

Fig. 10 Adjustment of effective keyhole source based on variation of temperature of boundary of a given shape 
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servable with an etchant typically used to examine weld micro- 
structure (e.g., Fig. I 1 ). In the case of partial-penetration-beam 
welds, where an amount of  material usually flows and solidi- 
fies above the top surface of  the material, the preparation of  the 
top view of the weld includes removal of this material by grind- 
ing smooth to the top surface of  the material. The top view of 
the weld crater can be used to define the length, width, and 
shape of  the weld melt pool at the time of discontinuation of  
heat input. 

In the case of high-energy-density welding (e.g., laser or 
electron-beam welding), the discontinuation of  energy input to 
the system is sufficiently abrupt that most of  the dynamical fea- 
tures of  the system are frozen into the macrostructure of the so- 
lidified system. Following the abrupt termination of  driving 
forces due to the beam-material interaction, solidification of  
the system occurs with minimal disturbance and over a time pe- 
riod that is on the order of  microseconds. Evidence of  how 
quickly the system freezes is shown in Fig. 11, where horizon- 
tal flow patterns within a section of the keyhole are readily ob- 
served, indicating the precise condition of the keyhole wall at 
the time the beam energy input was discontinued. 

During the dynamic steady state of the weld, oscillations in 
fluid flow and of the keyhole can be readily observed using 
electron-beam welder viewing optics at 40x magnification. Ac- 
cordingly, slight oscillations of  the trailing solidification 
boundary of the weld can be observed. When the beam energy 
input is abruptly discontinued, solidification still progresses to 
completion, but without any of  the interruptions associated 
with the driving forces in the fluid due to the beam-material in- 
teraction. During the dynamic steady state of the weld melt 
pool, any small oscillations or in general any small temporal 
variations of the trailing solidification boundary are manifested 
as changes in the cooling rate of this boundary. These slight 
changes in the cooling rate are observable in the microstructure 
of  the solidified weld zone by changes in the relative volume of 
primary and secondary phases and in grain size. 

As a result, macrostructural patterns can be formed, such as 
the solidification banding shown in Fig. 11. These patterns re- 
veal the entire shape of the solidification boundary existing 

during the dynamic steady state of  the weld melt pool. One is 
able to observe, effectively, the extent of the trailing solidifica- 
tion boundary at the instant of  time the beam energy input is 
discontinued. This quantity is revealed by the condition of un- 
interrupted solidification and bandless microstructure that pro- 
gresses from the farthest extent of  the weld melt pool, at the 
trailing solidification boundary, to the region of the melt pool 
having solidified last. A quantitative measurement of  this un- 
banded region provides information about the extent of the 
melt pool during the dynamic steady state (e.g., curve C 1 in Fig. 
9). One should note, however, that our technique relies heavily 
on the characteristic change in etching rates, which is in turn 
due to slight changes in the microstructure of  the material stud- 
ied (i.e., duplex stainless steel). The applicability of  the tech- 
nique to other materials remains an open question. 

The technique described is also applicable for determining 
the shape of  the solidification boundary along the longitudinal 
section of the weld--for  example, curve C 3 in Fig. 9, where a 
similar banding effect is observed. Although not as pronounced 
as in the top surface of  the melt pool, banding can be observed 
along the longitudinal section of  the weld that is representative 
of  the shape of  the trailing solidification boundary. 

One can, in principle, superimpose a specified type of tem- 
poral variation on the shape of  the keyhole in order to induce 
variations in the solidification rate of  the trailing boundary, 
which is in turn revealed in the microstructure by the technique 
described (e.g., Fig. 3 and 4). However, in practice there is al- 
ready associated with the keyhole sufficient quasi-periodic or 
intermittent character for inducing variations in the solidifica- 
tion rate. 

We indicate that our method of  extracting information about 
the shape of  the trailing solidification boundary is with respect 
to a different sensitivity regime than that considered by the 
analysis described in section 6 of this paper. Although there is a 
coupling between changes in the keyhole and the detailed char- 
acter of  the microstructure at the trailing solidification bound- 
ary, these temporal changes are not coupled to boundary shape. 
The characteristic scale of  resolution of  the model system de- 
fined by Eq 1,4, and 6 is macroscopic. The insensitivity of the 
trailing solidification boundary to details of  the character of the 
beam energy source is a macroscopic property of  the dynamic 
weld melt pool. It is the macroscopic shape of  the trailing so- 
lidification boundary that represents geometric-constraint in- 
formation. 

9. Conclusions 

Fig. 11 Longitudinal view of frozen dynamical features of 
weld, including flow within the keyhole and the trailing solidifi- 
cation boundary. 

In one sense our approach represents an extension of  the 
methods that employ a phenomenological heat source moving 
through a solid whose parameters are adjusted such that the cal- 
culated temperature of  solidification (or liquefication)--that is, 
TM--isotherm matches experimental measurements (Ref 8). 
Our approach entails the specification of upstream boundary 
values of  the temperature fields and flow fields that are such 
that downstream boundary values match experimental mea- 
surements. However, our approach differs from those that em- 
ploy a phenomenological heat source since it entails a complete 
accounting of all the physical transport: mass, energy, and mo- 
mentum. Because of this distinct feature, adjustment of up- 
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stream boundary values in accordance with experimental mea- 
surements does not represent an arbitrary-parameter adjust- 
ment. The mathematical properties of a bounded quasi-steady 
Stokes-flow region ensure that there exists only one set of up- 
stream values of T and U that is consistent with a given set of 
downstream boundary values, that is, the solidification bound- 
ary. Therefore, our refinement of the geometric-constraints 
method, which was originally introduced in Ref 2, entails a 
deemphasis of upstream boundary information that is outside 
the quasi-steady Stokes-flow region of the weld melt pool. 

An extension of our approach should be the inclusion of 
geometric information associated with expansion or flow of 
liquid above the plane corresponding to the top surface of the 
workpiece. Our refinement of the geometric-constraints 
method presented here has adopted the top-surface plane of the 
workpiece for specification of top-surface boundary values of 
T and U. This surface, however, does not correspond to the 
physical top-surface boundary of the melt pool. It remains an 
open issue for further investigation to determine to what extent 
inclusion of information concerning the physical top-surface 
boundary provides a basis for a complete specification of the 
system via a relatively small set of boundary values extracted 
from experiment. For example, which among the different 
types of boundary values shown in Fig. 9 are no longer neces- 
sary for a complete specification of the system if boundary val- 
ues associated with the physical top surface of the melt pool are 
included? 

We wish to indicate explicitly that our method is not limited 
only to the prediction of the temperature field in the solid, in- 
cluding the HAZ. One may infer, incorrectly, that adopting a set 
of upstream boundary values of the temperature and flow field 
rather than an explicit representation of the keyhole energy 
source implies an inherent approximation of the T and U fields 
within the liquid region. In principle, our approach provides a 
complete specification of the temperature field in the solid, in- 
cluding the HAZ, and of the temperature and flow field U in the 
FZ for regions of the melt pool close to the solidification 
boundary---or, more precisely, for regions of the FZ for which 
the character of the fluid flow is quasi-steady Stokes. 
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Appendix 1: Iterative Solution of Biharmonic Equation with 
Constraints 

There is a unique solution of Eq 23 within a finite closed do- 
main if Uj, VUj, V2Uj, and V3Uj are specified over a finite re- 
gion, including the boundary, enclosing the domain. We note 
that this condition is not the same as vnuj, n = 0, 1, 2, and 3, 
specified at the boundary. For this type of specification, a 
unique solution does not exist (Ref 9). Equivalently, via a fi- 
nite-difference representation, there is a unique solution of Eq 
24 within a finite closed domain if the value of Uj is specified at 
all nodes within four internode separations from the boundary 
nodes. This condition is imposed implicitly by imposing geo- 
metric constraints of the flow field. We note that given the 
above condition on the boundary nodes and their near-neighbor 

nodes, Eq 25 can be derived from Eq 24. From Eq 24, it follows 
that: 

6 6 

Up, j = 6gp ~1 k=l (EqA1) 

Next, for the second term ofEq AI, there is the identity: 

6 6 

1' 1 rqv2vk, j  tkV , j 
361Xp 6 [6[ tp  

k=l k=l 

(Eq A2) 

where 

6 

1 2 gkUk, j 
(Up, j) = 6-'~p k=l 

(Eq A3) 

and 

6 

v2<vp,?= <vk,?-6<vp,/ 
k=l 

(EqA4) 

Combining Eq A 1, A2, and A3, it follows that: 

6 6 
1 

Up, j -  6p.p k=l k=-I 
(Eq A5) 

Next, we note that: 

6 6 
1 1 

k=l 6"e k=l 
(Eq A6) 

which, when substituted into Eq A5, gives: 

6 

Up, j -  6~te k=l 
(Eq A7) 

The quantity 2Uk, j -(Uk, j) has significance with respect to 
the process of iteration. In general, if U (n-2) and U~ n-l) are the p 
(n - 2)th and (n - 1)th successive iterative approximations of a 
quantity U_, then the quantity 2U(p n-l) - U(p n-2) is called an ex- 
trapolatio~ to the root and is an estimate of the nth iterate Utp n) 
(Ref 10). The equivalence between Eq A7 and 25 follows by not- 
ing that the quantity U k �9 represents a successive iteration with re- ,3 
spect to the quantity( Uk, j). 
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Appendix 2: Model Parameters and Physical Quantities 

T M = 1426.85 ~ T G = 2740.85 ~ V B = 0.03 m/s 

Al = 10 --4 m At = 5 x 10 -4 s 

Lx= 10-2m L y = 4 •  10-3m Lz=7  x 10-3m 
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